Difference between revisions of "Decrypting Firmwares"

From The iPhone Wiki
Jump to: navigation, search
m
(moving content over...)
Line 29: Line 29:
   
 
Because of the new HFS Compression used in Snow Leopard and 3.0 DMGs, you may see zero-sized files in the DMG if you don't use Snow Leopard. In order to extract those, check [[Talk:Obtaining Decryption Keys]].
 
Because of the new HFS Compression used in Snow Leopard and 3.0 DMGs, you may see zero-sized files in the DMG if you don't use Snow Leopard. In order to extract those, check [[Talk:Obtaining Decryption Keys]].
  +
  +
== 3.0GM+ ==
  +
=== [[S5L8900]] ===
  +
To decrypt a firmware file, decrypt the encrypted key and IV in the [[KBAG]] using [[GIDecrypt]], or OpenSSL with the key 5F650295E1FFFC97CE77ABD49DD955B3 and the iv 0
  +
  +
=== [[S5L8720]] ===
  +
Business as usual, but keys and IVs have to be decrypted on the device still, unlike with the new [[S5L8900]] [[KBAG]]s. Apple incorrectly assumed that by encrypting iBEC and iBSS they were being sly. They were not. You can decrypt those on a 2.2.1 aes setup no problem whatsoever.
  +
  +
=== [[S5L8920]] ===
  +
The [[n88ap|iPhone 3GS]] firmware files are interesting. They have two [[KBAG]]s, which use AES-256 instead of the [[S5L8900]] and [[S5L8720]] that are using AES-128 still. The first KBAG has an identifier in it's header indicating that it is to be decrypted with the gid key, and the second is not known. For those that don't know how AES256 works, this now means that the first 0x10 bytes are the IV, and the remaining 0x20 bytes (not 0x10 anymore!) are the key.
   
 
== See Also ==
 
== See Also ==

Revision as of 19:49, 13 August 2013

1.0.x

If you want to decrypt 1.0.x iPhone Ramdisks, you must remove some trash from the beginning of them. You can do this in Terminal.app (on Mac OS X you can find them in /Applications/Utilities/).

  1. Unzip firmware image (change extension .ipsw to .zip and double click on archive) and find restore ramdisk.
  2. In Terminal.app, run
dd if=restore_ramdisk.dmg of=restore_ramdisk.stripped.dmg bs=512 skip=4 count=37464 conv=sync

Where restore_ramdisk.dmg is image of restore ramdisk (for example 1.0 iPhone firmware restore ramdisk is 694-5259-38.dmg), and restore_ramdisk.stripped.dmg is 'decrypted' image, that you can mount and explore from Finder.

NOTE: If after mounting stripped ramdisk you see errors, ignore them.

1.1.x

To decrypt the 1.1.x Ramdisks, you must do a little extra work.

  1. Strip the first 0x800 bytes. (2 kilobytes[1])
  2. In Terminal.app, run
openssl enc -d -in ramdisk.dmg -out de.dmg -aes-128-cbc -K 188458A6D15034DFE386F23B61D43774 -iv 0

This uses the iPhone's 0x837 key which was first leaked by Zibri and had its purpose revealed on Geohot's (now closed) blog.

2.x+

The ramdisks on 2.x and up firmwares is a simple IMG3 file that you can decrypt using img3decrypt[2] or xpwntool[3]. You must download one of these utilities. For easier access, put them in /usr/local/bin on Unix-based and Linux-based machines or wherever on Windows. If you use Windows, you must use the cd command to navigate to the XPwn directory.

If you're using img3decrypt, run this:

img3decrypt e restore_ramdisk.dmg restore_ramdisk_decrypted.dmg "Ramdisk_IV" "Ramdisk_Key"

If you're using xpwntool, run this:

xpwntool restore_ramdisk.dmg restore_ramdisk_decrypted.dmg -k "Ramdisk_Key" -iv "Ramdisk_IV"


Where restore_ramdisk.dmg is image of restore ramdisk and restore_ramdisk_decrypted.dmg is decrypted image, that you can mount and explore from Finder. "Ramdisk_IV" and "Ramdisk_Key" is the decryption keys that you can find at the VFDecrypt Keys page or in the Info.plist from PwnageTool FirmwareBundles folder.

Because of the new HFS Compression used in Snow Leopard and 3.0 DMGs, you may see zero-sized files in the DMG if you don't use Snow Leopard. In order to extract those, check Talk:Obtaining Decryption Keys.

3.0GM+

S5L8900

To decrypt a firmware file, decrypt the encrypted key and IV in the KBAG using GIDecrypt, or OpenSSL with the key 5F650295E1FFFC97CE77ABD49DD955B3 and the iv 0

S5L8720

Business as usual, but keys and IVs have to be decrypted on the device still, unlike with the new S5L8900 KBAGs. Apple incorrectly assumed that by encrypting iBEC and iBSS they were being sly. They were not. You can decrypt those on a 2.2.1 aes setup no problem whatsoever.

S5L8920

The iPhone 3GS firmware files are interesting. They have two KBAGs, which use AES-256 instead of the S5L8900 and S5L8720 that are using AES-128 still. The first KBAG has an identifier in it's header indicating that it is to be decrypted with the gid key, and the second is not known. For those that don't know how AES256 works, this now means that the first 0x10 bytes are the IV, and the remaining 0x20 bytes (not 0x10 anymore!) are the key.

See Also